Unit-111
7. Inheritance
Extending Classes, Concept of inheritance, Base class, Derived class, defining derived classes,
Visibility modes: Private, public, protected; Single inheritance: Privately derived, publicly
derived; Making a protected member inheritable, Access Control to private and protected
members by member functions of a derived class, Multilevel inheritance, Nesting of classes.

Concept of inheritance
C++ supports reusability through inheritance. “The mechanism of deriving a new class from
old one is called inheritance or derivation”.

The old class is referred as base class and the new class is called as derived class or subclass.

Defining derived class
A derived class can be defined by specifying its relationship with the base class.

The syntax of defining a derived class is: --

class derived_class_name: visibility _mode base_class_name

{
}

Here,

The colon indicates that the derived_class_name is derived from the base class_name.

The visibility_mode is optional and if present, may be either private or public.

The default visibility mode is private. The visibility mode specifies whether the features of the
base class are privately derived or publicly derived.

/Imembers of derived class

Example:
class D: private B /lprivate derivation

{
};

class D: public B /Ipublic derivation

{
};

3. class D: protected B /lprotected derivation

{
};

4.class D: B /lprivate derivation by default

//Imembers of D

//Imembers of D

//members of D

//members of D

};

» Types of inheritance
Single or single level inheritance
Multiple inheritance

Multilevel inheritance
Hierarchical inheritance

Hybrid inheritance

aRrwNE

1. Single Inheritance
In single inheritance, one subclass is derived from one base class only.

I Class A I(Base Class)

I Class B I{Derived Class)

Syntax:
class derived_class_name:visibility _mode base_class

{

Members of derived class

};

Example:
class B

{

. e
class D: public B

{
-

/[Program for single inheritance
#include<iostream.h>
#include<conio.h>

class vehicle

{

public:

vehicle()

{

cout<<"This is vehicle"<<endl,
}

Y

class car:public vehicle

{

public:

void display()

{

cout<<"This is display method";

¥

+H

void main()

{

clrscr();

car c; //calls and executes constructor of vehicle class
c.display();

getch();

}

E DO5Box 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC — >
iz iz wehicle
is is display method_
» Single inheritance: Privately derived, publicly derived; Making a protected member
inheritable

OR
Visibility Mode in Single Inheritance

The visibility mode specifies the control over the inherited members within the derived classes. A class
can inherit a base class in three visibility modes in Single Inheritance:

1. Public derivation

If a derived class is inherited from a base class publicly, then the public members of the base class will
become public in the derived class and protected members of the base class will become protected in the
derived class. While the private members will remain inaccessible by the derived class.

The following program code shows how to apply the public visibility mode in a derived class in
Single Inheritance:

class base_class
{
/[data members
/l member functions
¥
class derived_class: public base_class
{
// data members
/l member functions

};

Example:
The following program code displays the working of public visibility mode with all three access
specifiers of the base class:

//Single level inheritance: public derivation
#include<iostream.h>
#include<conio.h>
class base
{
public:

int varl;
protected:

int var2;
private:

int var3;

};

class derived:public base

{

public:

void getdata()

{

varl=100; //accessible and become public
var2=200; //accessible and become protected
var3=300; //not accessible

}

Y

void main()

{

derived d;

d.getdata();

getch();

¥

Output:

E DO5Box 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC —

= File Edit Search Hun Compile Debug Project
NONAMEGG . CPP

SINGLEPU.CPP

Options

void getdatac)
1
varl=1600:
varsZ=200:;
var3=300: ~»not accessible
¥
¥:
void main()
1
derived d:
d.getdata():
getch():
¥

19:3

Mes=sage

«Error SIMNGLEPU.CPP 19: ’'hase::wvard’ is not accessible

>

Hindow Help

In the above example, the visibility of the derived class derived_class is set as public so all the access
specifiers will remain the same. varl is a public member, so it is accessible outside the derived class.

var2 is a protected member, so it is accessible within the derived class but not outside that. Whereas,

var3 is a private member so it is not accessible outside the base class base_class.

2. Private derivation

If a derived class is inherited from a base class privately, then both the public and protected members of
the base class will become private in the derived class whereas, the private members will remain
inaccessible by the derived class.

Syntax:
class base_class
{
/I data members
/I member functions
}
class derived_class: private base_class
{
/I data members
/I member functions

}

Example:
The following code displays the working of private visibility mode with all three access specifiers of the
base class:

//Single inheritance: private derivation
#include<iostream.h>
#include<conio.h>
class base
{
public:
int varl;
protected:
int var2;
private:
int var3;
Y
class derived:private base
{
public:
void getdata()
{
varl=105; //accessible and become private
var2=205; //accessible and become private
var3=305; //not accessible

}
};

void main()
{

derived d;
d.getdata();
getch();

E DOSBox 0.74, Cpu speed: max 100%% cycles, Frameskip 0, Program: TC = = |
File Edit Search BRun Compile Debug Project Options Window Help
NOMNAMECSD . CPP — —— —————————————————————————————
SINGLEFU.CPFP -
SINGLEFR .CPFP -

woid getdatac)
i

varl=105:

varZ==5:

var3=305: ~~not accessible
T

¥:

woid mainC)

£

derived 4:

d.getdatacC):

= @i
[E]————————————— Me==sage

+Erroxyr SINGLEPR.CFPFP 23: "base::vwvard’ is not accessible

44— Edit source F10 Menu

T T T T T T

Fi -Hela:r.' Space Uiew source

3. Protected derivation
If a derived class is inherited from a base class protectedly, then both public and protected members of
the base class will become protected in the derived class whereas the private members will remain
inaccessible by the derived class.

Syntax:
class base_class
{
/I data members
/I member functions
+H
class derived_class: protected base class
{
// data members
/I member functions

};

Example:
The following program code shows how to apply the protected visibility mode in a derived class in
Single Inheritance:

//Single inheritance:proteccted derivation
#include<iostream.h>
#include<conio.h>

class base
{
public:

int varl;
protected:

int var2;
private:

int var3;

};

class derived:protected base

{

public:

void getdata()

{

varl=101; //accessible and become protected
var2=201; //accessible and become protected
var3=301; //not accessible

}

Y

void main()

{

derived d;

d.getdata();

getch();

B DOSBox 0.74, Cpu speed: max 1003 cycles, Frameskip 0, Program: TC

= File Edit Search Run Compile Debug Project Oy

NHONAMEGD . CPP -

SINGLEFU.CFPFP -
SINGLEFPR .CPP -

void getdatac)

i

wvarl=161:

varZ=201:

vardi=301: ~~not accessible
¥

¥:

void mainC)

i

derived 4:

d.getdata(d:

Message

+Error SINGLEFPR.CPP 21: "bhase::var3d’ is not accessible

SE2nace iena snarecese 4—0 Fdit snovecs Fi16 Mean

tions

— b
Window Help

The following table illustrates the control of the derived classes over the members of the base class in
different visibility modes in single inheritance:

Base Class Derived Class Derived Class Derived Class
Public Protected Private
Public Public Protected Private
Protected Protected Protected Private
Not Inherited / Remains Not Inherited / Not Inherited /
Private Private Remains Private Remains Private

2. Multilevel Inheritance
In this type of inheritance, a derived class is created from another derived class.

B

l

D1 /lderived from class base class B

/lderived from class base class D1

D2

Syntax:
class B

{
Y
class D1: public B
{

class D2: public D1

/[Program for multilevel inheritance
#include<iostream.h>
#include<conio.h>

class student

{

int rno;

char name[20];

public:

void get_rn()

{

cout<<"Enter roll no. and name="; cin>>rno>>name;

}
void put_rn()

cout<<"\n Roll No.="<<rno<<endl; cout<<"Name="<<name<<endl;

}

Y

class marks: public student
{

protected:

int m1,m2,m3;

public:

void get_marks()

{

cout<<"Enter marks of m1,m2 and m3="; cin>>m1>>m2>>m3;
}

Y

class game: public marks
{

protected:

int gm,total;

public:

void calculate()

{

cout<<"Enter the marks of game="; cin>>gm;
total=m1+m2+m3+gm;

}

void display()

{

put_rn();
cout<<"Total="<<total,
}

Y

void main()

{

clrscr();

game g,
g.get_rn();
g.get_marks();
g.calculate();
g.display();
getch();

}

E DOSBox 0.74, Cpu speed: max 100% cycles, Frarmeskip 0, Program: TC — ey

nter roll nwo. and name=101 B jarne
nter marks of ml.mZ2 and m3=75 83 90
BEnter the marks of game=91

Roll No.=161
Name=B jarne
Total=339_

3. Multiple Inheritance
In multiple Inheritance, a derived class have more than one base class. It means that a derived
class can get the members from different base classes.
It has the following structure:

(Base Class 1) Bl B2 (Base Class 2)

D (Derived Class)

Syntax of a derived class with multiple base classes are as follows:

class D: visibility_mode B1, visibility_mode B2, ...

{
/IMembers of D

}

Example:
class B1

{

class B2

{

class D: public B1, public B2

{
/IMembers of D

}

Here, the number of base classes will be separated by a comma (%, “) and the access mode for every
base class must be specified.

Example:

/I Program for multiple inheritance
#include<iostream.h>
#include<conio.h>
class B1

{

protected:

int m;

public:

void get_m(int x)

{

m=Xx;

}

Y

class B2

{

protected:

int n;

public:

void get_n(int y)

n=y;
}

¥

class D: public B1, public B2
{

public:

void display()

{
cout<<"m="<<m<<endl;
cout<<"n="<<n<<endl;
cout<<"m*n="<<m*n:;

}

¥

void main()

{

clrscr();

D d;

d.get_m(25);

d.get_n(5);

d.display();

getch();

}

e b a wE e rr . = e T s - ¥ ErmT W] L I

E DO5Box 0,74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC = x

4. Hierarchical Inheritance
In this type of inheritance, more than one derived class is created/derived from a single
base class.

B
D1 D2
D3
Syntax:-
class B
{
/I members of B
o
class D1: public B
{
// members of D1
o
class D2: public B
{
// members of D2
}
class D3: public D1
{

/I members of D3

¥

/[Program for hierarchical inheritance
#include<iostream.h>
#include<conio.h>

class vehicle

{

public:

virtual void speed()

{

cout<<"\n Speed of vehicle";

}

Y

class twowheeler:public vehicle
{

public:

void speed()

{

cout<<"\n Speed of vehicle";

}

Y

class fourwheeler:public vehicle
{

public:

void speed()

{

cout<<"\n Speed of fourwheeeler";
}

Y

void main()

{

clrscr();

vehicle *p,v;

p=&v;

p->speed();

twowheeler t;

p=&t;

p->speed();
fourwheeler f;
p=&f;
p->speed();
getch();

}

L LIl L EVRERE 1o

E DO5Box 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC — o

Speed of wehicle

Speed of wehicle
Speed of fourwheeeler_

5. Hybrid Inheritance
It is the combination of more than one type of inheritance to design a program.
It has the following structure:

A

/[Program for hybrid inheritance
#include<iostream.h>
#include<conio.h>

class base

{

public:

int i;

Y

class derivedl:virtual public base
{

public:

int j;

Y

class derived2:virtual public base
{

public:

int k;

Y

class derived3:public derivedl,public derived?2
{

public:

int sum;

Y

void main()

{

clrscr();

derived3 d;

d.i=10;

d.j=20;

d.k=30;

d.sum=d.i+d.j+d.k;
cout<<"i="<<d.i<<endl;
cout<<"j="<<d.j<<endl;
cout<<"k="<<d.k<<endl;
cout<<"Sum="<<d.sum;

getch();

OOl CREEL ORI L

|E DO5Box 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC - x

> Nesting of classes

e A class within a class is known as nested class.

e |t means that a class can also contain another class definition inside itself, which is called “Inner
Class” in C++.

e Inthis case, the containing class is referred to as the “Enclosing Class”.

e The Inner Class definition is considered to be a member of the Enclosing Class.

e The inner class has the same access rights as any other member of the class.

e The members of an enclosing class have no special access to members of a nested class; the

usual access rules shall be obeyed.

/IProgram for nested class
#include<iostream.h>
#include<conio.h>

class outer
{
public:
void show() //member function of outer class
{
i.display();
}
class inner //member of outer class
{
public:
void display()
{
cout<<"Display function of inner class";
}
H; /lobject of inner class
I3
void main()
{
clrscr();
outer o;
0.show();
getch();
}
E DO5Box 0,74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC — >

Display function of immer class_

